Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion.
نویسندگان
چکیده
HIV-1 Vpu enhances the release of virions from infected cells. Recent work identified Bst-2/CD317/tetherin as a host factor whose inhibitory activity on viral release is counteracted by Vpu. A current working model proposes that Bst-2 inhibits virus release by tethering viral particles to the cell surface. Here, we analyzed endogenous Bst-2 with respect to its effect on virus release from HeLa cells, T cells, and macrophages. We noted significant cell type-dependent variation in Bst-2 expression. Vpu caused a reduction in Bst-2 expression in transfected HeLa cells and long-term infected macrophages. However, Vpu expression did not result in cell surface down-modulation of Bst-2 or a reduction in intracellular Bst-2 expression in CEMx174 or H9 cells, yet virus replication in these cells was Vpu-responsive. Surprisingly, Bst-2 was undetectable in cell-free virions that were recovered from the surface of HeLa cells by physical shearing, suggesting that a tethering model may not explain all of the functional properties of Bst-2. Taken together we conclude that enhancement of virus release by Vpu does not, at least in CEMx174 and H9 cells, require cell surface down-modulation or intracellular depletion of Bst-2, nor does it entail exclusion of Bst-2 from viral particles.
منابع مشابه
Identification of Residues in the BST-2 TM Domain Important for Antagonism by HIV-1 Vpu Using a Gain-of-Function Approach
The HIV-1 Vpu protein enhances the release of viral particles from the cell-surface in a cell-type specific manner. In the absence of Vpu, nascent virions remain tethered to the cell-surface in restricted cell-types. Recently, the human host factor BST-2/CD317/tetherin was found to be responsible for the inhibition of virus release. It was also reported that HIV-1 Vpu can target human BST-2 but...
متن کاملThe ESCRT-0 Component HRS is Required for HIV-1 Vpu-Mediated BST-2/Tetherin Down-Regulation
The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, a highly conserved set of four hetero-oligomeric protein complexes, is required for multivesicular body formation, sorting ubiquitinylated membrane proteins for lysosomal degradation, cytokinesis and the final stages of assembly of a number of enveloped viruses, including the human immunodeficiency viruses. Here, we show ...
متن کاملVpu Antagonizes BST-2–Mediated Restriction of HIV-1 Release via β-TrCP and Endo-Lysosomal Trafficking
The interferon-induced transmembrane protein BST-2/CD317 (tetherin) restricts the release of diverse enveloped viruses from infected cells. The HIV-1 accessory protein Vpu antagonizes this restriction by an unknown mechanism that likely involves the down-regulation of BST-2 from the cell surface. Here, we show that the optimal removal of BST-2 from the plasma membrane by Vpu requires the cellul...
متن کاملA small molecule compound IMB-LA inhibits HIV-1 infection by preventing viral Vpu from antagonizing the host restriction factor BST-2
Human BST-2 inhibits HIV-1 replication by tethering nascent virions to the cell surface. HIV-1 codes Vpu that counteracts BST-2 by down-regulating this restriction factor from the cell surface. This important function makes Vpu a potential therapeutic target. Yet, no agents have been reported to block Vpu from antagonizing BST-2. In this study, we report a small molecule compound IMB-LA that ab...
متن کاملFunctional antagonism of rhesus macaque and chimpanzee BST-2 by HIV-1 Vpu is mediated by cytoplasmic domain interactions.
Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by interfering with the function of BST-2/tetherin, a cellular protein inhibiting virus release. The Vpu protein encoded by NL4-3, a widely used HIV-1 laboratory strain, antagonizes human BST-2 but not monkey or murine BST-2, leading to the conclusion that BST-2 antagonism by Vpu is speci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 8 شماره
صفحات -
تاریخ انتشار 2009